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INTRODUCTION 

Numerous  nondestructive evaluation experiments use 
thermo-physical characterization of surface or sub-surface 
profiles by means  of  harmonic modulated heat source 
methods. 

In this case, the heat diffusion equation is written as the 
thermal equivalent of  the Helmholtz equation, which can be 
solved with the aid of  different integral t ransforms [1 3]. 
Among  these, one presents great interest for problems with 
translational symmetry : the plane wave spectrum (PWS) [4, 
5]. This method is often used in near-field optics and can be 
applied to solving all differential equations with the appear- 
ance of  the Helmholtz equa t i on - -quan tum mechanical, 
acoustic [6] or thermal areas [7, 8]. 

In this note, the principal theoretical aspects of  the PWS 
are collected so as to be used in the thermal area. The method 
is simple and gives the a.c. temperature field due to the heat 
plane source. The three-dimensional diffusion equation is 
solved with the aid of  the two-dimensional Fourier trans- 
form. Straightforward analytical calculations give con- 
nections with the axisymetrical (Hankel transform) and 
point source problems. The analytical expressions lead to 
the direct use of Fast  Fourier Transform (FFT) algorithms 
available in computer  mathematical  software. Simple appli- 
cation of an example, via the F F T  algorithms, shows the 
ease and interest of  this general method.  

THEORETICAL BACKGROUND 

In the case of  a homogeneous  and isotropic medium, the 
differential equation verified by the thermal diffusion is 

1 ~3T(R, t) 
A T ( R , t ) -  - -  - G ( R , t )  (l) 

:~ ~t 

where the localized source term G and the thermo-physical 
properties of  the medium : diffusivity ~, thermal conductivity 
K, mass  density p and specific heat e are defined 

S(R, t) t¢ 
G(R,t)  = - -  c~ = (2a,b) 

K pc 

S is the deposited power at location R and time t. 
The theory here is restricted to the case of one single 

modulat ion frequency co for the source S, as it is currently 
used in photothermal  experiments [7]. We can introduce the 
complex harmonic solution of equation (1) as 

G(R,t)  = G(R)e -i .... T(R,t)  = T(R)e i .... (3a,b) 

giving the time-independent equation, i.e. the thermal 
Helmholtz equation [6] 

/'(D 
AT(R) + - -  T(R) = - G(R). (4) 

The three-dimensional Fourier t ransform of  the T(R) 
fields is defined as 

/ /" ('/" 

7~(k)= ?(k.k,,k:)=(2:)3,~JjJdRe "*T(R) (5) 

and a similar expression is obtained for the G(R) field. Then 
the integral t ransform of  equation (4) gives 

- k 2 7~(k) + ~ T(k) = - G(k). (6) 

Solving equation (6) for 7~(k) and inverting the result gives 
the temperature field as 

T(R) = --1 ; I  I dke'k'R G(k) (7) 
(2n) 2 ' 3 3 3 3  i~/o~--k 2 

with 

k 2 = k2~ +/~ +kL (8) 

The following will be particularly concerned with plane 
sources ; but  the temperature response to such sources could 
be totalled (in the linear therrnophysical area) for any three- 
dimensional sources. With the simple plane geometry, it is 
interesting to differentiate the plane (y, z) of  the source from 
the perpendicular axis (x). The vectors R and k can be rewrit- 
ten as 

R = ( x , r ) = ( x , y , z )  k = ( k , q ) = ( k ~ k y ,  k:) .  (9a,b) 

The direct and inverse source terms are specified as 

G(R) = G(r, x) = A ( r ) 6 ( x - x e )  

1 k 1 ik 
G(k) = A ( k , . , k : ) ~ e - '  •xo = A ( q ) ~ e  ,% (10a,b) 

./2n 
where A(q) is the two-dimensional Fourier t ransform of 
the plane source A(r). Equat ion (10b) is introduced into 
equation (7) to obtain 

1 l e • ~ ( l l )  
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NOMENCLATURE 

two-dimensional source term 
specific heat 
source term in thermal diffusion equation 
three-dimensional Fourier space source 
term 
two-dimensional Fourier space source term 
Besset function of first kind of order zero 
three-dimensional Fourier space vector 
one-dimensional complex thermal wave- 
vector 
heat power in the point source case 
two-dimensional Fourier space vector 
two-dimensional location vector 
three-dimensional location space vector 
reflection coefficient of  the a.c. thermal 
solution from interface 

S 
T 

heat power source term 
complex a.c. temperature field 
three-dimensional Fourier transform of a.c. 
temperature field 
two-dimensional Fourier translbrm of a.c. 
temperature field. 

Greek symbols 
diffusivity 

p mass density 
~,) angular  frequency 
i, thermal conductivity 
/. radial coordinate in the two-dimensional 

Fourier space 
X transfer term of the plane wave spectrum. 

with 

,i 7 

z(q) = /,mJ k~ k~. (12) 

The inner integration t 11) can easily be perlbrmed in the 
complex plane. It finally gives 

i (" I'. ,., exp(ixlx-.v,.I) .  
T(R) = ~ J J o q e  q &(q) Z 

hn(z) ~>0; Re(z)~>0. (13) 

Equation (13) determines completely the temperature field 
at any point R, from the data of  the plane source G(R). 

The (two-dimensional) PWS of the temperature created 
by the plane source is thus 

i 
~-(O,q) = _~2X &(q). (14) 

More generally, without source, the transfer function from 
a known temperature field located at the plane x = 0 to the 
plane x( > 0) can be written as 

with 

'i! T(R) = T(x, rt = ~ dq e'q'rT (0,q) exp(ixx) (15) 

7(0, q) = 2~c ~ ~ dre  'q'~f(0. r). (16l 

As formulas ( l 3) and (15) show, the theory can be directly 
used by FFT algorithms. 

The PWS method is an exact solution of the thermal equa- 
tion (4) and can be linked to the usual solutions. In the 
case of an axisymmetrical source with its centre located at 
(xo, O,O), the general two-dimensional transform can be 
modified to 

i f ~ d22~(2) exp[ilx x~lv"i~o/~ A 2] T(R) 
5 , , i~,), '~- 2 ~ 

× ~ d0exp [i).rcos(O)]. (17) 
J ii 

This gives the temperature field from the zeroth Hankel 
transform A().) of  the source term A(r) 

~()') = j o  drrJo(r2)A(r). (18) 

Thus 

i l r  " 
d22Jo(2r)&().) exp[tlx-x¢lX(z)] . (19) 

r (R)  = 5 , z(~)  

Such a field T(R) can be totalled on different plane sources 
in order to give the total response for a three-dimensional 
heat source. 

Another  interesting case is the point source of strength p 

P . G(R) = -¢5(x xc)6(y y~)a(z z~). (20) 
K 

In using the Weyl's formula [5] 

exp(i~,lR- Roll 
IR-Rol  

i f fdqe,q . , , ro ,  exp(izlx-xol)  " 
2n Z 

This leads to 

with 

(21) 

p exp(iklR R~I) 
T(R) 4n~,- IR R,,I (22) 

•/ioJ k, = ~-  (23) 

the complex thermal wave vector appearing in general one- 
dimensional problems. 

The resulting equation (22) corresponds, of  course, to 
the Green's  function for equation (4). This enlightens the 
characteristics of  the PWS. The decrease of  the magnitude 
of the temperature field [equation (13)] is entirely described 
by the transfer function in the x-direction. This is a common 
feature with the near field of  optical source, where the homo- 
geneous waves as well as the evanescent waves can be written 
solely by using PWS [4, 5]. 
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EXAMPLE 

The chosen example corresponds to the theoretical analy- 
sis of  the recently observed thermal-wave interferences [9]. 
An aluminium layer (thermal conductivity x~ = 200 W m -  L 
K-~,  diffusivity al = 8.5 10 -5 m 2 S -1, thickness L = 1 mm) 
is covered with a thin layer of  black paint which permits total 
surface absorption. Two in-phase modulated Gaussian laser 
beams (power 10 mW, radius 300 #m, modulat ion frequency 
18 Hz) hit the surface and generate in the metal layer the 
a.c. component  of  temperature field T(R), submitted to the 
Fourier type boundary conditions [2, 8] at the air-Al inter- 
face, with a convective heat transfer coefficient He (He = 10 
W m  2 K-L). 

--~~ ?mxx T(0, r),_0 = A ( r ) - - H o T ( O , r ) .  (24) 

The rear medium is constituted by a semi-space with a 
thermal conductivity x2 and diffusivity a2 ; so the continuity 
equations at the interface are written as 

--~cl ~ x T i  , = --X2 ~ x T 2  ~ ~ T l ( L , r ) =  T 2 ( L , r ) .  

(25a,b) 

This simple geometry can be analysed in terms of  the PWS 
by using the Fourier t ransform of  the Helmholtz equation 
(4) and of the continuity equations (24) and (25). This gives 
without any approximation 

1 • 

T(R)=T(x,r)= 2re f fdq e'q'rT(0, q) 
x [exp(i;~tx) + ~ ( q )  exp(--  iz, x)], (26) 

where the PWS for this problem takes the source, the con- 
vective coefficient and the geometry into account. 

~(q) 
T ( 0 , q )  = - [ i x , x , ( q ) {  l _ ~ ( q ) } _ H e { l  + ~ ( q ) } ]  ( 27 )  

in which ~(q)  is a reflection coefficient, from the rear inter- 
face [6]. 

~ (q)  = x ~ ( q ) - - x 2 2 2 ( q )  . . . .  . 
KIZI ~ e x p  lZtZl tq)L}. (28) 

Figure 1 gives the amplitudes of  the a.c. temperature field 
on both sides of  the A1 layer ( front and rear). Figure 2 shows 
details of  the amplitude and the phase of  the a.c. temperature 
field obtained with formulas (27) and (28) at the rear inter- 
face. The thermo-physical properties of  the second material 
are that of  polyvinylidene fluoride film (x2 = 0.13 W m -~ 
K -~, ~2 = 5.4 10 8 m 2 s ~). The function of the convective 
coefficient rapidly becomes negligible with increasing modu-  
lation frequency. The calculations have been performed with 
a M A T L A B  R two-dimensional FFT  algorithm ; the result is 
obtained within some seconds with a 128 x 128 grid. The 
diffusion of  the temperature field appears clearly on Figs. 1 
and 2. 

CONCLUSION 

In this note, some formal and computing aspects of  the 
plane wave spectrum expansion have been gathered. This 
powerful theoretical method,  generally used in optics, par- 
ticularly in near-field optics, is well adapted to the solution 
of  the a.c. thermal diffusion equation with sources in the case 
of  a homogeneous  medium. This particular form of  integral 
t ransform is specially adapted to plane boundary conditions. 
The obtained expressions are directly transposed in two- 
dimensional FFT  algorithms. 

A generalization of  a multilayer matrix [7] or quadripole 
[10] algorithm can be directly formulated and can give a.c. 
thermal responses for any shape source. 
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Fig. 1. Magnitude of  the 18 Hz a.c. temperature field in front (- - -) and at the rear ( . . . . .  ) interfaces of  the 
1 m m  thick 300/ tm radius. The rear amplitude is augmented by a factor 5. 



3764 Technical Note 

3.5 (a) 

~-'~ 3.0 

~ 2.5 

1.5 \ \ " 

< 1.0 

0.54 2 ~  ~ 
3 

m x l 0  +3 0 " + 

-1 m x 10 3 
-2 -2 

140 - (b) 

120. 

~ 100 - 

f, 80 .  

60,  

40 ,  

4 ~ ~ " / ~ - ' j ~ 3 2  

mxlO -3 o 
0 ~ " ~ <  j / j ~  -1 m x l 0  -3 

-2 ~2 

Fig. 2. (a) Part of the magnitude map of the a.c. temperature field in the case of two in-phase Gaussian 
sources. The distance between the two sources is 2.4 mm and the studied depth 1 mm. (b) Part of the phase 

lag map of the a.c. temperature field. The phase reference is that of the modulated source signal. 
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